Reactions of 5,6,8,9,10,11-Hexahydro-4H-pyrido[3,2,1-jk]carbazole and of 5,6,9,10,11,12-Hexahydro-4H,8H-cyclohepta[4,5]pyrrolo[3,2,1-ij]]quinoline with Arenesulphonyl Azides

By Gulam A. Bahadur, A. Sydney Bailey,* and Patricia A. Baldry, Dyson Perrins Laboratory, South Parks Road, Oxford OX1 30Y

Abstract

The title hexahydropyridocarbazole reacts with arenesulphonyl azides giving either cis- or trans-11a-arylsulphonyl-amino-8-arylsulphonylimino-octahydrocyclopenta[4.5] pyrido[3,2.1-ij]quinoline [(4) or (6)], depending on the solvent. The hexahydrocycloheptapyrroloquinoline yields either a phenanthridine (13) or a 2,4 -butanoquinoline (16) under the same conditions.

We have previously investigated the reactions of the pyrroloindoles ($1 ; n=4$ or 5) with arenesulphonyl azides and the chemistry of the products. ${ }^{1}$ This work has now been extended to the reactions of the pyridoindoles (2 ; $n=4$ or 5) to see whether these compounds behaved like (1) or like the N-methylated compounds (3 ; $n=4$ or 5). ${ }^{2,3}$

Compound ($2 ; n=4$) reacted smoothly with p chlorobenzenesulphonyl azide (CbsN_{3}) in chloroform and in carbon tetrachloride yielding a product (4) to which we ascribe the trans-configuration. When compound (4) was dissolved in trifluoroacetic acid (TFA) the elimination product (5) was formed. Compound (5) was also obtained when CbsN_{3} reacted with ($2 ; n=4$) in pyridine solution; also from this reaction compound (6), isomeric with (4) was isolated. Compound (6) was the only product obtained when the reaction was run in dry dimethyl sulphoxide. Boiling the indole (2; $n=4$) with CbsN_{3} in methanol gave a complex mixture from which a small quantity of the orange spiro-compound (7) was isolated. Treatment of ($2 ; n=4$) with CbsN_{3} in acetic acid in an attempt ${ }^{2}$ to make (8) gave an intractable tar; none of the spiro-compound (9) [the product expected from the reaction of (8) with a second molecule of azide] ${ }^{2,4}$ was isolated, nor was there any sign of the ring-opened compound (10) [cf. the reaction of ($1 ; n=$ 4) with azides ${ }^{1]}$.

This is the first time during this work that we have

[^0]obtained two isomers of structural types (4) and (6); we have examined the relative ease of elimination of CbsNH_{2} from these two compounds. The acid-catalysed (TFA) elimination of CbsNH_{2} from compound (4) was very fast. In the time ($8-10 \mathrm{~min}$) taken to prepare the solution and run the n.m.r. spectrum (probe temp. $35^{\circ} \mathrm{C}$) elimination was complete; when the solution (TFA) was made up at $0^{\circ} \mathrm{C}$ and the n.m.r. spectrum immediateiy run at $0{ }^{\circ} \mathrm{C}$ the signal at $\tau 4.88\left[\mathrm{CH}_{2} \mathrm{~N}\right.$ in compound (5)] was already present and after 15 min at $0^{\circ} \mathrm{C}$ elimination appeared to be complete. In contrast the n.m.r. spectrum $\left(35{ }^{\circ} \mathrm{C}\right.$) of compound (6) in TFA contained no signal at $\tau 4.88$; after 60 min at $35{ }^{\circ} \mathrm{C} 50 \%$ of the elimination product had been formed (intensity of signal at 4.8). The u.v. spectrum of compound (4). (1 mg in 15 ml of $\mathrm{EtOH} ; 1 \mathrm{~cm}$ cell) was recorded and 1 drop of 1,5 -diaza-bicyclo[4.3.0]non-5-ene (DBN) was then added to the solution. The spectrum was re-run immediately and the triple peak at ca. 350 nm (see Figure 1 in ref. 2) characteristic of the chromophore in compound (5) was observed; the intensity of this band did not change during 60 min , showing that the elimination was complete in less than 1 min . When the experiment was repeated with triethylamine (1 drop) in place of DBN, elimination was 50% complete in 5 min at $22{ }^{\circ} \mathrm{C}$. When this experiment was performed with compound (6) and triethylamine no elimination occurred during 3 days at room temperature. The solution was then boiled for 4 h ; the

[^1]spectrum remained unchanged and compound (6) was reisolated. In solution in ethanol containing DBN compound (6) slowly eliminated CbsNH_{2} at room temperature; the reaction was incomplete after 3 days and was completed by boiling. Heating compound (6) with sodium hydroxide solution afforded the amide (11).

The cycloheptindole $(2 ; n=5)$ has now been prepared; it reacts with azides more slowly than does ($1 ; n=5$). Reaction of ($2 ; n=5$) with tosyl azide in chloroform
with compounds obtained in the N-methyl series. ${ }^{3,6}$ In these reactions (16) resembles (18) rather than (19). ${ }^{6}$

The isomeric compounds (4) and (6) are formed by attack of a molecule of azide on opposite faces of the intermediate (20). ${ }^{6}$ Addition of the azide molecule cis to the NHZ group in (20) leads to compound (4); transaddition gives (6). The effect of solvents on the stereochemistry of these addition reactions is similar to their effect on the addition of azides to hexahydro- N-methyl-

(1)

(2)

(4)

(8)

(9)

(10)

(7)

(11)

(12)

(13)

(14)

(15)
solution yielded the cis-fused product ($13 ; \mathrm{Z}=\mathrm{T}$). The cis-structure is assigned from the similarity in chemical and spectroscopic properties to the compound obtained by the action of TsN_{3} on hexahydro- N -methylcyclohept $[b]$ indole, ${ }^{3}$ the structure of which has been determined by X-ray crystallography. ${ }^{5}$ Hydrolysis of this material afforded (14), and acid-catalysed elimination of TsNH_{2} yielded (15). The reaction of $(2$; $n=5$) with CbsN_{3} in chloroform solution afforded (13; $Z=C b s)$; in carbon tetrachloride solution a mixture containing (13; $Z=\mathrm{Cbs}$) and (16) was obtained. When compound (16) was melted, (17) was produced in high yield; the same transformation occurred on dissolving (16) in TFA. Structures (16) and (17) were assigned from a comparison of spectroscopic and chemical properties

[^2] J. M. Peach, J.C.S. Perkin II, 1977, in press.
cyclohept $[b]$ indole; this has been discussed in an earlier paper. ${ }^{6}$

It is interesting that the reaction of CbsN_{3} with (2; $n=4$) in carbon tetrachloride does not give rise to the bridged compound (16; $\left[\mathrm{CH}_{2}\right]_{3}$ replacing $\left[\mathrm{CH}_{2}\right]_{4}$). Increased strain in the ' meta' bridging now favours shift a rather than shift b in the intermediate (21).

To complete this series of experiments the reaction between N-methyltetrahydrocarbazole (3; $n=4$) and CbsN_{3} in dimethyl sulphoxide was examined. A 70\% yield of the spiro-compound (22) was obtained. The structure was established by the characteristic mass spectrometric fragmentation pattern. ${ }^{2,7}$ The isolation of (22) shows that under these conditions the 1,3 -shift ${ }^{4}$ of the CbsNH group in (23) occurs more quickly than the

[^3]addition of a second molecule of azide to (23), whereas in (20) addition of a second molecule of azide occurs more quickly than the 1,3 -shift of Cbs-NH.

EXPERIMENTAL

General details and instruments used have been reported. ${ }^{8}$ U.v. spectra were determined for solutions in ethanol and n.m.r. spectra for solutions in CDCl_{3} unless otherwise stated; i.r. spectra were recorded for Nujol mulls.
trans-1 la-p-Chlorophenylsulphonylamino-8-p-chlorophenyl sulphonylimino-5,6,8,8a, $9,10,11,11 \mathrm{a}-$ octahydro- 4 H -cyclo-penta[4,5]pyrido[3,2,1-ij]quinoline (4).-(a) 5,6,8,9,10,11-Hexa-4H-pyrido $[3,2,1-j k]$ carbazole[1 g; m.p. 67-68 ${ }^{\circ}$ (lit., ${ }^{9}$ $65-66^{\circ}$] was dissolved in chloroform (5 ml , purified over

8-p-Chlorophenylsulphonylimino-5,6,8,9,10,11-hexahydro4 H -cyclopenta $[4,5]$ pyrido $[3,2,1-\mathrm{ij}] q u i n o l i n e ~(5)$.-(a) A solution of compound (4) (1.3 g) in $\mathrm{Pr}-\mathrm{OH}(4 \mathrm{ml})$ was boiled for 30 min ; on cooling the solid product (5) (0.7 g) (pure by t.l.c.) separated.
(b) A solution of (4) (200 mg) in TFA (2 ml) was kept at at $20^{\circ} \mathrm{C}$ for 10 min . The solvent was then removed in vacuo and $\mathrm{MeOH}(1 \mathrm{ml})$ added (yield 75%).
(c) A solution of the $c i s$-isomer (6) (see later) (200 mg) in TFA was kept at room temperature for 4 h (yield 75\%).
(d) To a solution of compound (4) (100 mg) in EtOH (5 ml) was added DBN (0.1 ml). After 10 min the solvent was removed in vacuo and MeOH (1 ml) added (yield 52%); this reaction was repeated using $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml} ; 2 \mathrm{~h})$.

(19)

(20)

(21)

(22)

(23)
alumina) and $\mathrm{CbsN}_{3}(2.1 \mathrm{~g})$ was added; after 5 days the solvent was removed and $\mathrm{MeOH}(2 \mathrm{ml})$ added. The solid was collected and recrystallised from propan-1-ol (yield 0.63 g).
(b) The indole (1 g) and the azide (2.1 g) were dissolved in dry carbon tetrachloride (5 ml). After 3 days the solid (2.8 g) was collected and recrystallised from MeCN (25 ml). The solid which separated $(0.85 \mathrm{~g})$ was collected and the motherliquor concentrated to 15 ml yielding further material (0.6 g). The CCl_{4} and the MeCN mother-liquors were mixed and evaporated. The residue was chromatographed (silica gel; CHCl_{3}) yielding azide (0.3 g) and (4) (0.21 g). Compound (4) formed tiny prisms from propan-1-ol, m.p. 118° (decomp.) (Found: C, 54.7; H, 4.4; N, 6.9; S, 10.5. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 55.0 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.1 ; \mathrm{S}, 10.8 \%)$; $\lambda_{\text {max. }} 228,288 \mathrm{sh}$, and $302 \mathrm{~nm}(\varepsilon 34200,14200$, and 16200$)$; $\nu_{\max } 1540(\mathrm{C}=\mathrm{N})$ and $3260 \mathrm{~cm}^{-1}(\mathrm{NH})$; $\tau 2.03(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 2.4-2.9(9$ $\mathrm{H}, \mathrm{m}), 4.58\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$, exchanged in $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.8-6.3(1 \mathrm{H}$, $\mathrm{m})$, and $6.5-8.7(12 \mathrm{H}, \mathrm{m}) ; m / e 398\left(M-\mathrm{CbsNH}_{2}, 1 \%\right)$ and 223 ($M-\mathrm{Cbs}-\mathrm{CbsNH}_{2}, \quad 100 \%$). Compound (4) formed tiny prisms, m.p. 129-131 ${ }^{\circ}$, from MeCN, and these retained solvent after drying at $100{ }^{\circ} \mathrm{C}$ in vacuo [$\left.\tau 8.0(\mathrm{~s})\right]$. Recrystallisation from $\mathrm{CHCl}_{3}-\mathrm{CCl}_{4}$ gave a sample free from MeCN (absence of signal at $\tau 8.0$) (Found: $\mathrm{N}, 6.9 \%$).
${ }^{8}$ A.S. Bailey, T. Morris, and Z. Rashid, J.C.S. Perkin I, 1975, 420.
(e) Compound (6) (100 mg) was boiled (4 h) with DBN (0.3 ml) in EtOH (5 ml) (yield 71%). Compound (5) formed prisms, m.p. 198- 200° (from MeCN) (Found: C, 62.9; H, $4.9 ; \mathrm{N}, 6.8 ; \mathrm{S}, 8.0 . \quad \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.2 ; \mathrm{H}$, $4.8 ; \mathrm{N}, 7.0 ; \mathrm{S}, 8.0 \%$) ; $\lambda_{\text {max. }} 218,230 \mathrm{sh}, 260 \mathrm{sh}, 264,300 \mathrm{sh}$, 338 , and $363 \mathrm{~nm}(\varepsilon 33600,23300,27200,29600,6000$, 12100 , and 11600); $\nu_{\max } 1520 \mathrm{~cm}^{-1}$; $\tau 2.08(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz})$, $2.6-2.9(5 \mathrm{H}, \mathrm{m}), 5.82(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 6.33(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz})$, $6.80(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $7.5-8.0(4 \mathrm{H}$, $\mathrm{m})$; $\tau(\mathrm{TFA}) 1.9-2.4(7 \mathrm{H}, \mathrm{m}), 4.88(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 6.3-$ $6.7(4 \mathrm{H}, \mathrm{m}), 7.1-7.35(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz})$, and $7.4-7.9(4 \mathrm{H}$, $\mathrm{m})$; $m / e 398\left(M^{+}, 13 \%\right)$, and $223(100 \%)$.
cis-lla-p-Chlorophenylsulphonylamino-8-p-chlorophenyl-sulphonylimino-5,6,8,8a, $9,10,11,11 \mathrm{a}$-octahydro-4H-cyclo-
penta $[4,5]$ pyrido $[3,2,1-\mathrm{ij}]$ quinoline (6).-(a) A solution of $(2 ; n=4)(1 \mathrm{~g})$ and $\mathrm{CbsN}_{3}(2.1 \mathrm{~g})$ in pyridine (1 ml) was kept at room temperature for 12 days. $\mathrm{MeOH}(5 \mathrm{ml})$ was added and the solid collected Recrystallisation from MeCN yielded (5) (m.p., i.r., n.m.r., t.l.c.) (450 mg). The MeCN mother-liquors were evaporated to small volume yielding compound (6) (240 mg), m.p. 132- 135°.
(b) Compound ($2 ; n=4$) (1 g) and $\mathrm{CbsN}_{3}(2.1 \mathrm{~g})$ were dissolved in $\mathrm{Me}_{2} \mathrm{SO}(4 \mathrm{ml}$; dried by azeotropic removal of

[^4]water with benzene and over molecular sieves). The solution became viscous and after 5 days water (10 ml) was added. The solid was collected, suspended in water (50 ml) for 24 h to remove the absorbed $\mathrm{Me}_{2} \mathrm{SO}$, and dried (yield $2.8 \mathrm{~g})$. Recrystallisation from $\mathrm{MeCN}(8 \mathrm{ml})$ afforded needles $(0.84 \mathrm{~g})$. Further crops (totalling 510 mg) were obtained by concentrating the mother liquors. These were coloured yellow by traces of the spiro-compound (7). Compound (7) (3 mg) was isolated by p.l.c. (silica; PhH-EtOAc, 9:1); column chromatography of the MeCN residues gave CbsN_{3} (186 mg). The sulphonylimine (6) formed needles, m.p. 132-135 ${ }^{\circ}$, containing MeCN (Found: C, 55.4; H, 4.9; N, 8.2, 8.5. $\quad \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, 55.0; $\mathrm{H}, 4.2 ; \mathrm{N}, 7.1$. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{\circ} \mathrm{CH}_{3} \mathrm{CN}$ requires $\mathrm{C}, 55.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 8.9 \%$); $\lambda_{\text {max. }} 228,276 \mathrm{sh}, 285$, and $301 \mathrm{~nm}(\varepsilon 37500,16500,18900$, and 16800); $v_{\max .} 1.530(\mathrm{C}=\mathrm{N}), 2250(\mathrm{MeCN})$, and 3200 $\mathrm{cm}^{-1}(\mathrm{NH}): \tau 2.07(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 2.6-3.3(9 \mathrm{H}, \mathrm{m}), 4.25$ ($1 \mathrm{H}, \mathrm{NH}$, exchanged in $\mathrm{D}_{2} \mathrm{O}$), $5.5-6.0(2 \mathrm{H}, \mathrm{m}), 6.4-6.6$ $(1 \mathrm{H}, \mathrm{m}), 7.1-7.4(4 \mathrm{H}, \mathrm{m}), 7.99\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right)$, and $8.0-8.8(6$ $\mathrm{H}, \mathrm{m}) ; \tau(\mathrm{TFA}) 1.87(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.3(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz})$, $2.6-3.1(7 \mathrm{H}, \mathrm{m}), 5.4-5.7(1 \mathrm{H}, \mathrm{m}), 5.8-6.2(2 \mathrm{H}, \mathrm{m}), 6.9-$ $7.4(4 \mathrm{H}, \mathrm{m}), 7.6-8.8(6 \mathrm{H}, \mathrm{m})$, and $7.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CN}\right)$; during the time taken to make up and run the spectrum in TFA no elimination occurred; $m / e 589$ ($M^{+}, 2 \%$), 414 (M - Cbs, 15%), 398 ($M-\mathrm{CbsNH}_{2}, 2 \%$), and 223 (100%).
cis-1la-p-Chlorophenylsulphonylamino-5,6,9,10,11,11a-hexahydro- 4 H -cyclopenta $[4,5]$ pyrido $[3,2,1-\mathrm{ij}]$ quinolin- 8 (8aH)-one (11).-A solution of compound (6) (1 g) in EtOH (25 ml) containing $\mathrm{NaOH}(0.5 \mathrm{~g})$ was boiled for 6 h . Water was added and the mixture extracted with CHCl_{3}; the solution was dried $\left(\mathrm{MgSO}_{3}\right)$, the solvent removed, and the residue (300 mg) recrystallised from MeOH . Compound (11) formed prisms, m.p. $120-121^{\circ}$ (Found: C, $60.4 ; \mathrm{H}, 5.3$; N, 6.6. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.7 \%$); $\lambda_{\text {max. }} 217,232 \mathrm{sh}, 251 \mathrm{sh}, 267,278 \mathrm{sh}, 289 \mathrm{sh}, 327$, and 340 sh nm ($\varepsilon 29000,24000,12000,6000,4000,3800,2100$, and $1500)$; $\nu_{\text {max. }} 1580,1640,3240$, and $3340 \mathrm{~cm}^{-1}$; $\tau 2.1(2 \mathrm{H}$, $\mathrm{d}, J 8 \mathrm{~Hz}), 2.44-3.0(5 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.77(2 \mathrm{H}, \mathrm{t}$, $\left.J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.66-7.17(7 \mathrm{H}, \mathrm{m})$, and $7.56-8.11(4 \mathrm{H}$, $\mathrm{m}) ; m / e 416\left(M^{+}, 2 \%\right), 225\left(M-\mathrm{CbsNH}_{2}, 14 \%\right)$, 191 (32%), 175 (34%), and $111(100 \%)$. Alkaline hydrolysis of (5) afforded $5,6,9,10$-tetrahydro-4H-cyclopenta $[4,5]$ pyrido $[3,2,1$ -ij]quinoline-8(11H)-one (12) (71\%), needles from light petroleum, m.p. 113- 115° (Found: C, 79.7; H, 6.8; N, 6.2. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.\mathrm{C}, 80.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 6.2 \%\right)$; $\lambda_{\text {max. }}$ $215 \mathrm{sh}, 235,250,267 \mathrm{sh}, 278,289 \mathrm{sh}, 312 \mathrm{sh}, 326$, and 340 sh $\mathrm{nm}(\varepsilon 20300,30500,15400,4700,6500,6000,4200,5700$, and 4200); $\nu_{\text {max. }} 1585$ and $1650 \mathrm{~cm}^{-1}$; $\tau 2.6-3.05(3 \mathrm{H}, \mathrm{m})$, $5.80(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 6.8-7.15(6 \mathrm{H}, \mathrm{m})$, and $7.6-8.05(4$ $\mathrm{H}, \mathrm{m}) ; m / e 225\left(M^{+}, 100 \%\right), 210(70 \%)$, and 196 (12%).
1^{\prime}-p-Chlorophenylsulphonyliminospiro $\left[\right.$ cyclopentane- $2^{\prime}\left(1^{\prime}-\right.$ H)-pyrrolo[3,2,1-ij]quinoline] (7).-A solution of (2; $n=4$) $(0.5 \mathrm{~g})$ in methanol (5 ml) containing $\mathrm{CbsN}_{3}(0.5 \mathrm{~g})$ was boiled for 1 h and the solvent removed. The resulting oil was chromatographed on silica. Benzene-ethyl acetate ($10: 1$) eluted an oil to which a little methanol was added. Next day the solid was collected and recrystallised from ethanol (yield 40 mg). Compound (7) formed orange needles, m.p. $187-188^{\circ}$ (Found: C, $62.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.0 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.0 \%$); $\lambda_{\text {max }} 233,255 \mathrm{sh}, 296$, and $475 \mathrm{~nm}\left(\varepsilon 29200,13100,9000\right.$, and 9500); $\nu_{\text {max }} 1610$ $\mathrm{cm}^{-1} ; m / e 400\left(M^{+}, 23 \%\right), 225(M-C b s, 100 \%), 210(13 \%)$, and 197 (12%).

Reactions of 5,6,9,10,11,12-Hexahydro-4H,8H-cyclohepta$[4,5]$ pyrrolo[3,2,1-ij]quinoline $(2 ; \quad n=5)$ with Azides.-

Compound (2; $n=5$) was prepared from 1 -aminotetrahydroquinoline (16.2 g$)^{8}$ and cycloheptanone (12.3 g). The resulting hydrazone was heated (1 h) with sulphuric acid $(10 \% ; 150 \mathrm{ml})$. The indole $(2 ; n=5)$ was recrystallised from ethanol (yield 11.8 g); m.p. $96-97^{\circ}$ (Found: C, 84.9; $\mathrm{H}, 8.5 ; \mathrm{N}, 6.2 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 85.3 ; \mathrm{H}, 8.5 ; \mathrm{N}, 6.2 \%$); $\lambda_{\text {max }} 205,232,288$, and $293 \mathrm{~nm}(\varepsilon 20800,32600,7100$, and $7200)$; $\tau 2.73-3.30(3 \mathrm{H}, \mathrm{m}), 5.97-6.08(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz})$, $7.0-7.3(6 \mathrm{H}, \mathrm{m}), 7.58-7.90(2 \mathrm{H}, \mathrm{m})$, and $8.16 \mathrm{br}(6 \mathrm{H}, \mathrm{m})$; $m / e 225\left(M^{+}, 100 \%\right), 196(58 \%)$, and $183(30 \%)$. A solution of $(2 ; n=5)(2 \mathrm{~g})$ and tosyl azide (3.5 g) in chloroform (20 ml) was kept at room temperature for 4 days; the solvent was then removed and methanol added. The solid which separated was collected and recrystallised from acetonitrile. cis-5,6,8a,9,10,11,12,12a-Octahydro-12a-p-tolylsulphonyl-amino-8-p-tolylsulphonylimino-4H,8H-pyrido [3,2,1-de]phenanthridine ($13 ; \mathrm{Z}=\mathrm{Ts}$) formed prisms (1.1 g ; a further 300 mg recovered from the mother-liquors), m.p. 261-263 , (decomp.) (Found: C, 64.0; H, 6.0; N, 7.6. $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 7.5 \%$) ; $\lambda_{\text {max. }} 225,274 \mathrm{sh}, 283$, and $302 \mathrm{~nm}(\varepsilon 31000,14100,16600$, and 16500$)$; $v_{\text {max. }}$. $1550(\mathrm{C}=\mathrm{N})$ and $3320(\mathrm{NH}) \mathrm{cm}^{-1} ; \tau 2.11(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz})$, $2.55-3.10(9 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{s}), 5.7-6.0(1 \mathrm{H}, \mathrm{m}), 6.2-$ $6.35(1 \mathrm{H}, \mathrm{m}), 6.7-6.9(1 \mathrm{H}, \mathrm{m}), 7.1-7.4(2 \mathrm{H}, \mathrm{m}), 7.59(3 \mathrm{H}$, s), $7.75(3 \mathrm{H}, \mathrm{s})$, and $8.0-9.2(10 \mathrm{H}, \mathrm{m})$; $m / e 563\left(M^{+}, 28 \%\right)$, $408(M-T s, 52 \%)$, and $237(100 \%)$. A solution of (13; $Z=T s)(450 \mathrm{mg})$ in water (5 ml) and ethanol (5 ml) containing sodium hydroxide (400 mg) was boiled under reflux (4 h , diluted with water, and neutralised (HCl). The solid was collected and recrystallised from ethanol. cis-5,6,8a, 9,-10,11,12,12a-Octahydro-12a-p-tolylsulphonylamino-4H,8Hpyrido [3,2,1-de]phenanthridin-8-one (14) formed prisms, m.p. $262-264^{\circ}$ (yield 300 mg) (Found: C, 67.2; H, 6.2; N, 6.9; $\mathrm{S}, 7.7 . \quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 6.8, \mathrm{~S}$, 7.8%) ; $\lambda_{\text {max. }} 216,234 \mathrm{sh}, 255,263 \mathrm{sh}, 287$, and $298 \mathrm{~nm}(\varepsilon$ $25400,10900,9500,7800,2700$, and 2500) ; $\nu_{\text {max. }} 1655$ ($\mathrm{C}=\mathrm{O}$) and $3220(\mathrm{NH}) \mathrm{cm}^{-1}$; $\tau 2.55-3.15(7 \mathrm{H}, \mathrm{m}), 4.50(1$ $\mathrm{H}, \mathrm{s}, \mathrm{NH}$, exchanged $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.6-5.9(1 \mathrm{H}, \mathrm{m}), 6.6-6.8(1 \mathrm{H}$ $\mathrm{m}), 7.1-7.6(3 \mathrm{H}, \mathrm{m}), 7.61(3 \mathrm{H}, \mathrm{s})$, and $8.0-9.0(10 \mathrm{H}, \mathrm{m})$; $m / e 410\left(M^{+}, 41 \%\right)$ and $240(M-\mathrm{TsNH}, 100 \%)$. A solution of ($13 ; \mathrm{Z}=\mathrm{Ts}$) in TFA (1 H ; room temp.) gave $5,6,9,10,11,12$-hexahydro-8-p-tolylsulphonylimino-4H,8H-
pyrido[3,2,1-de]phenanthridine (15) (79\%) as prisms (from ethanol), m.p. $174-175^{\circ}$ (Found: C, 70.2; 6.2; N, 7.1. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}, 6.1 ; \mathrm{N}, 7.1 \%$); $\lambda_{\text {max. }} 219$, 264, and $345 \mathrm{~nm}\left(\varepsilon 37000,31000\right.$, and 12300); $\nu_{\max } 1510$ $(\mathrm{C}=\mathrm{N})$ and $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; $\tau 2.1-2.8(7 \mathrm{H}, \mathrm{m}), 5.52(2 \mathrm{H}$, $\mathrm{t}, J 8 \mathrm{~Hz}), 6.95-7.08(6 \mathrm{H}, \mathrm{m}), 7.62(3 \mathrm{H}, \mathrm{s})$, and $7.8-8.4$ ($6 \mathrm{H}, \mathrm{m}$) ; m/e $392\left(M^{+}, 3 \%\right)$ and 237 (100%).

The indole $(2 ; n=5)(2 \mathrm{~g})$ and $\mathrm{CbsN}_{3}(3.8 \mathrm{~g})$ were dissolved in carbon tetrachloride (20 ml); after 2 days the solvent was removed and methanol added. The solid which separated was recrystallised from acetonitrile. cis-12a-p-Chloro-phenylsulphonylamino-8-p-chlorophenylsulphonylimino-5,6,8a,9,10,11,12,12a-octahydro-4H,8H-pyrido[3,2,1-de]-
phenanthridine ($13 ; \mathrm{Z}=\mathrm{Cbs}$) formed tiny prisms $(0.75 \mathrm{~g})$, m.p. 134- 135° (Found: C, 55.3; H, 4.6; N, 7.0; S, 10.4 . $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, $55.6 ; \mathrm{H}, 4.5 ; \mathrm{N}, 6.9 ; \mathrm{S}, 10.6 \%$); $\lambda_{\text {max. }} 225,275 \mathrm{sh}, 283$, and $302 \mathrm{~nm}(\varepsilon 33500,14100,16200$, and 16800) ; $\nu_{\text {max }} 1550$ and $3240 \mathrm{~cm}^{-1} ; \tau 2.14(2 \mathrm{H}, \mathrm{d}, J 8$ Hz), $2.52-2.62(3 \mathrm{H}, \mathrm{m}), 2.8-3.1(6 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{s}$, NH, exchanged $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.8-6.2(2 \mathrm{H}, \mathrm{m}), 6.72 \mathrm{br}(1 \mathrm{H}, \mathrm{d}, J 8$ $\mathrm{Hz}), 7.1-7.6(2 \mathrm{H}, \mathrm{m})$, and $8.0-8.9(10 \mathrm{H}, \mathrm{m}) ; m / e 603\left(M^{+}\right.$, $4 \%), 428(22 \%), 237\left(M-\mathrm{Cbs}-\mathrm{CbsNH}_{2}, 60 \%\right)$, and 225 (100%). The acetonitrile mother liquors from the recrys-
tallisation of (13; $\mathrm{Z}=\mathrm{Cbs}$) were evaporated and methanol $(2 \mathrm{ml})$ was added. The solid was collected and recrystallised from ethanol. 13-p-Chlorophenylsulphonylamino-14-p-chlorophenylsulphonylimino-5,6,8,9,10,11,12,13-octahydro-8,13-methano-4H-azonino[3,2,1-ij]quinoline (16) formed yellow needles ($\mathbf{0 . 8 5} \mathrm{g}$), m.p. $144-145^{\circ}$ (decomp.) (Found: $\mathrm{C}, 56.2 ; \mathrm{H}, 4.7 ; \mathrm{N}, 7.0 ; \mathrm{S}, 10.3 . \quad \mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, $55.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 6.9 ; \mathrm{S}, 10.6 \%)$; $\lambda_{\text {max. }} 219,232,264$, and $315 \mathrm{~nm}(\varepsilon 34600,33200,9700$, and 2700$)$; $v_{\text {max. }} 1650$ and $3280 \mathrm{~cm}^{-1} ; \tau 2.05(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.45-3.90(9 \mathrm{H}, \mathrm{m}), 4.40$ $\left(1 \mathrm{H}, \mathrm{NH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.55-4.65(1 \mathrm{H}, \mathrm{m}), 6.70$ $(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 7.2-7.3(2 \mathrm{H}, \mathrm{m})$, and $7.4-9.0(10 \mathrm{H}, \mathrm{m})$; $m / e 412$ ($M-\mathrm{CbsNH}_{2}, 14 \%$), 237 (27\%), 209 (27%), 195 (24%), and 112 (100%).

12-p-Chlorophenylsulphonylimino-5,6,9,10,11,12-hexa-hydro- $4 \mathrm{H}, 8 \mathrm{H}-$ cyclohepta $[4,5]$ pyrrolo $[3,2,1-\mathrm{ij}]$ quinoline (17). $-(a)$ Compound (16) was heated at $150^{\circ} \mathrm{C}$ for 4 min , methanol added, and the solid recrystallised from ethanol (yield 78\%).
(b) Compound (16) was boiled for 12 h in ethyl propionate (yield 91%).
(c) Compound (16) was dissolved in TFA, the solution evaporated after 12 h , and methanol added to the residue (yield $\mathbf{8 0} \%$). Compound (17) formed needles, m.p. 173$174^{\circ}$ (Found: C, 64.3 ; H, $5.0 ; \mathrm{N}, 6.8 ; \mathrm{S}, 8.1 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2}-$ $\mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 64.0 ; \mathrm{H}, 5.1 ; \mathrm{N}, 6.8 ; \mathrm{S}, 7.9 \%\right)$; $\nu_{\text {max. }} 220$,

248, 265, 278, and 357 nm ($\varepsilon 30000,10900,12200,12500$, and 22500$)$; $\nu_{\text {max. }} 1520 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) ; \tau 2.05(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz})$, $1.15-3.10(5 \mathrm{H}, \mathrm{m}), 5.95(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 6.5-6.6(2 \mathrm{H}, \mathrm{m})$, $7.0-7.1(4 \mathrm{H}, \mathrm{m})$, and $7.6-8.2(6 \mathrm{H}, \mathrm{m})$) τ (TFA) $1.90(2 \mathrm{H}$, d, $J 10 \mathrm{~Hz}), 2.23-2.63(5 \mathrm{H}, \mathrm{m}), 5.63(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 6.60-$ $6.95(6 \mathrm{H}, \mathrm{m}), 7.5-7.7(2 \mathrm{H}, \mathrm{m})$, and $7.9-8.1(4 \mathrm{H}, \mathrm{m})$; $m / e 412\left(M^{+}, 66 \%\right), 348\left(M-\mathrm{SO}_{2}, 29 \%, m^{*} 294.1\right), 237(\mathrm{M}$ - Cbs, $100 \%), 209\left(237-\mathrm{C}_{2} \mathrm{H}_{4}, 37 \%\right), 195\left(237-\mathrm{C}_{3} \mathrm{H}_{6}\right.$, 68%), 181 (14%), and 167 (16%).

2'-p-Chlorophenylsulphonylimino-1'-methyl-2-p-chloro-
phenylsulphonylaminospiro[cyclopentane- 3^{\prime}-indoline] (22).-9-Methyltetrahydrocarbazole ($3 ; n=4$) (1 g) in dry $\mathrm{Me}_{2} \mathrm{SO}$ $(2 \mathrm{ml})$ was mixed with $\mathrm{CbsN}_{3}(2 \mathrm{~g})$ in $\mathrm{Me}_{2} \mathrm{SO}(2 \mathrm{ml})$. After 2 weeks water (5 ml) was added. Next day the solid was collected and recrystallised from $\mathrm{MeCN}-\mathrm{CHCl}_{3}(1: 1)$ (yield 2.1 g). The spiro-compound formed plates (from propan-1ol), m.p. 228- 230° (Found: C, 53.5; H, 4.2; N, 7.8; S, 11.1. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 7.4 ; \mathrm{S}, 11.3 \%$); $\nu_{\text {max }} 1565(\mathrm{C}=\mathrm{N})$ and $3300 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.04$ $(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 2.28-2.9(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.2(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $6.7(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, and $7.8-8.5(7 \mathrm{H}, \mathrm{m}) ; m / e 563\left(M^{+}, 10 \%\right)$, 388 ($M-\mathrm{Cbs}, 32 \%$), 334 ($M-\mathrm{CbsN}: \mathrm{CH} \cdot \mathrm{CH}: \mathrm{CH}_{2}, 16 \%$), 333 (82%), 213 ($M-2$ Cbs, 30%), 198 ($338-\mathrm{CbsNH}, 7 \%$), 197 (23%), 171 ($M-\mathrm{CbsN}: \mathrm{CH} \cdot \mathrm{CH}_{3}-\mathrm{Cbs}, 22 \%$), 159 (334 Cbs, 100%), $158(39 \%)$, and $111\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 61 \%\right)$.
[7/069 Received, 13th January, 1977]

[^0]: ${ }^{1}$ A. S. Bailey, P. A. Hill, and J. F. Seager, J.C.S. Perkin I, 1974, 967 ; A. S. Bailey, P. A. Baldry, J. M. Peach, S. R. Critchley, K. Prout, and E. White, ibid., 1976, 2254.
 ${ }^{2}$ A. S. Bailey, R. Scattergood, and W. A. Warr, J. Chem. Soc. (C), 1971, 2479.

[^1]: 3 A. S. Bailey and J. F. Seager, J.C.S. Perkin I, 1974, 763.
 ${ }^{4}$ A. S. Bailey, A. J. Buckley, and J. F. Seager, J.C.S. Perkin $I, 1973,1809$.

[^2]: ${ }^{5}$ S. R. Critchley, K. Prout, D. J. Watkin, A. S. Bailey, and

[^3]: ${ }^{6}$ A. S. Bailey and P. A. Wilkinson, J.C.S. Perkin I, 1976, 481.
 ${ }^{7}$ J. Tickle and C. K. Prout, J. Chem. Soc. (C), 1971, 3401.

[^4]: ${ }^{\text {g }}$ A. N. Kost, L. G. Yudin, and A. P. Terent'ev, Zhur. Obshchei Khim., 1959, 29, 1949; Chem. Abs., 1960, 54, 8817.

